

Background Information

Algal Blooms

- Overgrowth of algae or cyanobacteria
- Climate change (& human influence)
- Harmful algal blooms are just one type
- Methylene blue dye (MB) as a proxy for toxins

Credits of Image to FAU (1)

Sargassum Seaweed

- Brown algae: FL, Gulf of Mexico, Caribbean
- Natural role of habitat, reducing erosion

Credits of Image to Franziska Elmer (2)

Credits of Image to New York Post (3)

Why Sargassum?

- Readily available
- Essentially untouched as a resource
- Potential as an adsorbent in water treatment

Credits of Image to NASA (4)

(NASA, 2023)

Sargassum-Derived Hydrochar

Hydrochar (HC)

- A cooked biomass that has undergone hydrothermal carbonization (HTC)
- Ground into a fine powder

Hydrochar Adsorption

Hydrochar (HC)

- **Adsorption** = particles stick to surface
- **Absorption** = substance absorbs

(enters) another

Image Credit to Tahmid Islam (5)

7/7/2023

Need For Research

Algal Blooms

Harmful Algal Blooms (HABs) pose a threat to three main categories:

Environmental Health

Image Credit to Ben Depp (6)

Economic Health

Image Credit to Fox 13 (7) (Heil & Muni-Morgan, 2021) 7/7/2023

Similar Studies

Similar Studies

- 2016 study on pig manure, pine wood, and cardboard-derived adsorbents with MB dye
- 2023 study on sargassum-derived superactivated hydrochar with MB dye

Pine wood adsorbent

Image Credit to Cadianne Chambers (9)

Gap In Academia

Gap In Academia

- Sargassum by itself not fully explored
- Lack of study about the singular potentiality of sargassum itself
 - Increased production efficiency
- Circle of renewability and environmental chain

Focal Of This Study

Focus Of The Study

1: Determine the adsorption capability of sargassum-derived hydrochar on methylene blue (MB) dye.

2: Discover the significance of sargassum-derived hydrochar's synthesis parameters.

Research Questions

- 1. Which tested HTC treatment variation of sargassum-derived hydrochar has the highest adsorbance capability of methylene blue dye?
- 2. What is the significance of the different parameters in the HTC treatment against methylene blue dye removal?

Methodology

Experimental Design

Experimental Parameters

In hydrochar creation:

HTC Temperature – 180°C, 220°C, 260°C

HTC Time – 15 min, 30 min, 60 min

HTC Sargassum: Water Ratio – 1:10, 1:15, 1:20

Experimental Design

Taguchi Method

- Taguchi method is used for product experimentation
- It's focus lies in optimization of the product and experimentation
 - Cut down 27 experiments to 9
- Allows for experimentation of a variety of different degrees of parameters

Taguchi Method

HTC Time (Minutes) Experiment # HTC Temp (C) Water Ratio 180° 15 1:10 1 2 180° 30 1:20 180° 3 60 1:15 4 220° 15 1:20 220° 30 1:15 5 220° 60 1:10 6 7 260° 15 1:15 8 260° 30 1:10 9 260° 1:20 60

Experimental Design

7/7/2023

Experiments

Materials

Machines:

- Parr Reactor
- Tube Revolver
- Spectrophotometer

Substances:

- Sargassum Seaweed
- Sargassum-derived Hydrochar
- Methylene Blue

Seaweed Preparation

- Collected from beach •
- Washed with water
- Frozen
- Thawed
- Chopped for Parr reactor suitability

C	onduct Experiments
1. 2. 3. 4. 5.	Prep seaweed HTC (Cook) seaweed Process hydrochar Hydrochar + MB Absorbance reading
	FLORIDA

HTC

27

Hydrochar (HC)

- A cooked biomass that has undergone hydrothermal carbonization (HTC)
- Ground into a fine nowder via coffee grinder & mortar and pestle

Treatment

- Taking chosen hydrochar variation and mixing it with 100 ppm dye
- Left to adsorb for 24 hrs (in revolver for even mixing)
- Hydrochar filtered out

Before (30 mg Hydrochar + 30mL dye)

24 hours

7/7/2023

- 1. Prep seaweed
- 2. HTC (Cook) seaweed
- 3. Process hydrochar
- 4. Hydrochar + MB
- 5. Absorbance reading

(H260 t30 1:10)

Varying & Increased Concentration

Varying Concentration:

- Testing the highest performing HC against higher MB concentrations–150, 200, 250, and 300 ppm.
- A higher concentration is picked for further experimentation

Increased Concentration:

- The 300 ppm MB tested against all HCs
- Same experimental design as 100 ppm

Results

100 PPM

X-Axis Labeling Key: H : Temperature (°C) t : duration (minutes) sargassum:water

- All perform sufficiently
- Best Performing:
 - H260 t60 1:20
- Worst Performing:
 - H180 t15 1:10
- Green hue by leaching

7/7/2023

FLORIDA'S STEM UNIVERSIT

Varying Concentration Test

			H260	t60 1:20	for Varying	Concentrat	ions
		(ລາ 300 ອີສິ 250				•	
Concentration (ppm)	Percentage Removal (%)	002 tctiy		•	•		
100	99.02 ± 0.05	ୁ ଜୁମ 150 ପ୍ର ସ୍ଥ 100	•				
150	98.86	01 50					
200	97.92	Ads 0)	5	10	15	20
250	96.43			Fin	al Concentra	tion	
300	95.13						
						FL	¢ ∫rida

7/7/2023

FLORIDA'S STEM UNIVERSITY

300 PPM

X-Axis Labeling Key: H : Temperature (°C) t : Duration (minutes) Sargassum:Water

- Best Performing:
 - H260 t60 1:20
- Worst Performing:
 - H180 t15 1:10
- Similar trends as 100 ppm

100 ppm Vs. 300 ppm

Box Plot: HTC Temperature

Box Plot: Sargassum-to-Water Ratio

Modeling

Modeling

- Beta regression
 - Discover if and how the parameters affect percentage r
 - Utilized for bounded response variables between 0 and 1
 - Link functions: $[0,1] \rightarrow \mathbb{R}$
 - Pseudo R-squared & AIC measure fit of the model Higher R-squared & Lower to the data
- Modeling three datasets:

40

• 100 ppm, 300 ppm, Combined dataset

Cauchit Link Function

$$g(u) = tan(\pi(u - \frac{1}{2}))$$

100 ppm *All Variables*

3 Variable *Continuous* Model:

Variable	Coef. Estimate	P-Value
Intercept	-32.59148	8.17e-16
Temperature	0.19762	<2e-16
Time	<i>Time</i> 0.22226	
Water Ratio 1:15	2.60562	0.117
<i>Water Ratio 1:20</i> 8.24170		8.86e-09
Pseudo R-Squared: 0.8615 AIC: -79.2611		

P Value < 0.05 = Significant

3 Variable Categorical Model:

Variable	Coef. Estimate	P-Value	
Intercept	6.28999	< 2e-16	
Temperature 220	10.89503	< 2e-16	
Temperature 260	13.30246	< 2e-16	
Time 30	5.67935	< 2e-16	
<i>Time 60</i> 9.28842		<2e-16	
<i>Water Ratio 1:15</i> 1.95730		1.38e-05	
Water Ratio 1:20	6.07861	<2e-16	
Pseudo R-Squared: 0.9867 & AIC: -99.4049			

7/7/2023

FLORIDA'S STEM UNIVERSITY'

ΠΔ

P Value < 0.05 = Significant

300 ppm *All Variables*

3 Variable Continuous Model:

Variable	Coef. Estimate	P-Value
Intercept	-2.023726	0.0824
Temperature	0.022521	7.75e-05
Time	0.011621	0.2327
Water Ratio 1:15	0.272150	0.5199
Water Ratio 1:20	0.788053 0.061	
Pseudo R-Squared: 0.7473 & AIC: -41.4058		

3 Variable Categorical Model:

Variable	Coef. Estimate	P-Value	
Intercept	2.21749	1.11e-15	
Temperature 220	0.91227	0.02274	
Temperature 260	1.79495	0.00024	
Time 30	0.02853	0.94873	
Time 60	0.49532	0.26701	
Water Ratio 1:15	0.32417	0.44974	
Water Ratio 1:20	0.87185	0.05646	
Pseudo R-Squared: 0 7628 & AIC: -37 5023			

7/7/2023

Full Data *Categorical* Model

- Utilizing full data set with categorical factors
 - 18 data points and added
 'Concentration' variable

Goal: Higher R-squared & Lower AIC

P Value < 0.05 = **Significant**

Variable	Coef. Estimate	P-Value	
Intercept	1.80668	< 2e-16	
Temperature 220	0.18645	2.97e-05	
Temperature 260	0.28887	4.57e-10	
Time 30	0.06982	0.123625	
Time 60	0.14314	0.002028	
Water Ratio 1:15	0.09620	0.033797	
Water Ratio 1:20	0.16104	0.000499	
Concentration 300	-0.75597	< 2e-16	
Pseudo R-Squared: 0.9661 & AIC: -110.6173			

EM LINIVEDSIT

Conclusions

Conclusions

- 1. Highest level of parameters = Highest performing
 - a. HTC Temperature 260°C, HTC Time 60

minutes, Ratio 1:20

2. HTC Temperature is a significant factor and has a

positive impact on a hydrochar's percentage

removal of MB

Discussion

Limitations

- Constraints in data collection
- Limited amount of data
- Taguchi method does not take into account interactions between parameters

Contributions & Future Work

- Sargassum is supported as a resource for creating a sufficient adsorbent
- Singular sufficiency

Future work:

- Hydrochar with actual toxin
- Implementation of hydrochar
- Algal bloom prediction

References

[1] FAU. (2018). Algal Bloom [Photograph]. https://phys.org/news/2018-01-source-toxic-green-algal-blooms.html

- [2] Elmer, F. (2023). Floating Sargassum [Photograph]. https://thefishsite.com/articles/seaweed-startup-set-to-develop-sargassum-aquafarms
- [3] New York Post. (2023). Sargassum Accumulation in Florida [Photograph]. https://nypost.com/2023/03/13/huge-seaweed-bloom-visible-from-space-heading-towards-florida/
- [4] NASA. (2023). Great Atlantic Sargassum Belt [Image]. https://earthobservatory.nasa.gov/images/151188/a-massive-seaweed-bloom-in-the-atlantic
- [5] Islam, T., Sultana, I., Chambers, C., Saha, S., Saha, N., Kirtania, K. & Reza, T. (2022). Hydrochar Adsorption [Image]. https://doi.org/10.3390/en15249340
- [6] Depp, B. (2018). Red Tide Florida [Photograph]. National Geographic, https://www.nationalgeographic.com/environment/article/news-longest-red-tide-wildlife-deaths-marine-life-toxins
- [7] Fox 13. (2021). Dead Fish Cleanup [Photograph]. Fox 13. https://www.fox13news.com/news/dead-fish-cleanup-begins-as-red-tide-drifts-north-along-gulf-coast
- [8] Rossi, M. (2021). Pinewood Biochar [Photograph]. MDPI. https://www.mdpi.com/1996-1944/14/7/1776
- [9] Chambers, C. (2023). Superactivated Hydrochar Process [Image]. https://doi.org/10.1007/s13399-023-04326-2
- Barnes, B., Xie, Y., Hu, C. (2023). Outlook of 2023 Sargassum blooms in the Caribbean Sea and Gulf of Mexico. University of South Florida Optical Oceanography Lab. https://optics.marine.usf.edu/projects/SaWS/pdf/Sargassum outlook 2023 bulletin4 USF.pdf
- Chambers, C., Saha, S., Grimes, S., Calhoun, J. & Reza, T. (2023). Physical and morphological alteration of Sargassum-derived ultraporous superactivated hydrochar with remarkable cationic dve adsorption. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-023-04326-2
- Coffey, R., Paul, M.J., Stamp, J., Hamilton, A., & Johnson, T. (2018). A Review of Water Quality Responses to Air Temperature and Precipitation Changes 2: Nutrients, Algal Blooms, Sediment, Pathogens. Journal of the American Water Resources Association, 55. https://doi.org/10.1111/1752-1688.12711
- Ferrari, S.L.P. & Cribari-Neto, F. (2004). Beta Regression for Modeling Rates and Proportions. Journal of Applied Statistics, 31(7), 799-815. https://doi.org/10.1080/0266476042000214501
- Heil, C.A. & Muni-Morgan, A.L. (2021), Florida's Harmful Algal Bloom (HAB) Problem: Escalating Risks to Human, Environmental and Economic Health With Climate Change, Frontiers in Ecology and Evolution, 9, https://doi.org/10.3389/fevo.2021.646080
- Ho, J. & Michalak, A. (2019). Exploring temperature and precipitation impacts on harmful algal blooms across continental U.S. lakes. Limnology and Oceanography, 65(5). 992-1009. https://doi.org/10.1002/lno.11365
- Karna, S.K. & Sahai, R. (2012). An Overview of Taguchi Method. International Journal of Engineering and Mathematical Sciences, 1(1), 11-18.
- Krishnaiah, K. & Shahabudeen, P. (2012). Applied Design of Experiments and Taguchi Methods. PHI Learning Private Limited.
 - https://books.google.com/books?id=hju9JYVhfV8C&lpg=PR3&ots=jEnWKtCOcj&dq=taguchi%20methods%20design%20of%20experiments&lr&pg=PA199#v=onepage&q=taguchi%20methods%20design%20of%20experiments&lr&pg=PA199#v=onepage&q=taguchi%20methods%20design%20of%20experiments&lr&pg=PA199#v=onepage&q=taguchi%20methods%20design%20of%20experiments&lr&pg=PA199#v=onepage&q=taguchi%20methods%20design%20of%20experiments&lr&pg=PA199#v=onepage&q=taguchi%20methods%20design%20of%20experiments&lr&pg=PA199#v=onepage&q=taguchi%20methods%20design%20of%20experiments&lr&pg=PA199#v=onepage&q=taguchi%20methods%20design%20of%20experiments&lr&pg=PA199#v=onepage&q=taguchi%20methods%20design%20of%20experiments&lr&pg=PA199#v=onepage&q=taguchi%20methods%20design%20of%20experiments&lr&pg=PA199#v=onepage&q=taguchi%20methods%20design%20of%20experiments&lr&pg=PA199#v=onepage&q=taguchi%20methods%20design%20of%20experiments&lr&pg=PA199#v=onepage&q=taguchi%20methods%20design%20of%20experiments&lr&pg=PA199#v=onepage&q=taguchi%20methods%20design%20methods%20design%20methods%20design%20methods%20design%20methods%20design%20methods% riments&f=false
- Lonappan, L., Rouissi, T., Das, R.K., Brar, S.K., Ramirez, A.A., Verma, M., Surampalli, R.Y., Valero, J.R. (2016). Adsorption of methylene blue on biochar microplastics derived from different waste materials. *Waste Management*, 49(9). 537-544. https://doi.org/10.1016/j.wasman.2016.01.015.
- McKay, G. (1996). Use of Adsorbents for the Removal of Pollutants from Wastewaters. CRC Press, Inc. https://books.google.com/books?id=ep5bLsOs4IwC&lpg=PA1&ots=ToS4kjStPe&lr&pg=PA48#v=onepage&q=methylene&f=false NASA. (2023). A Massive Seaweed Bloom in the Atlantic. NASA Earth Observatory. https://earthobservatory.nasa.gov/images/151188/a-massive-seaweed-bloom-in-the-atlantic
- National Oceanic and Atmospheric Administration [NOAA]. (2023, April 4). Sargassum FAO, https://coastwatch.noaa.gov/cwn/news/2023-04-04/sargassum
 - fag.html#:~:text=The%20presence%20of%20Sargassum%20occurs.coast%20in%20the%20Caribbean%20Sea.
- Rubin, E., Rodriguez, P., Herrero, R., Cremades, J., Barbara, I., Sastre de Vicente, M.E. (2004). Removal of Methylene Blue from aqueous solutions using as biosorbent Sargassum muticum: an invasive macroalga in Europe, Journal of Chemical Engineering and Biotechnology. 80, 291-298. https://doi.org/10.1002/jctb.1192
- Sargassum. (2023, March 17). Florida Health. https://www.floridahealth.gov/environmental-health/beach-water-quality/ documents/sargassum-factsheet-appr-final.pdf
- What is Sargassum? (n.d.). NOAA. https://oceanexplorer.noaa.gov/facts/sargassum.html#:~:text=This%20floating%20habitat%20can%20provide,crabs%2C%20shrimp%2C%20and%20more.

Questions?

Erica Gregg: erica.gregg@ucdenver.edu Aubrey Rutz: rutz@usf.edu

Supplementary

Experimental Design

Calibration Curve

Calibration Curve

Absorbance: The amount of light absorbed by a substance Range for Spectrophotometer Readings: $0.356 \rightarrow 1.702$

Full 100 ppm Results

Type of Hydrochar	Percentage Removal (%)
H180 t15 1:10	94.97 ± 0.07
H180 t60 1:15	98.26 ± 0.03
H180 t30 1:20	98.20 ± 0.04
H220 t15 1:20	98.65 ± 0.03
H220 t30 1:15	98.67 ± 0.08
H220 t60 1:10	98.83 ± 0.08
H260 t15 1:15	98.76 ± 0.01
H260 t30 1:10	98.55 ± 0.12
H260 t60 1:20	99.02 ± 0.05

Full 300 ppm Results

Type of Hydrochar	Percentage Removal (%)
H180 t15 1:10	87.19 ± 0.23
H180 t60 1:15	90.71 ± 0.18
H180 t30 1:20	88.54 ± 1.03
H220 t15 1:20	90.35 ± 0.38
H220 t30 1:15	92.08 ± 0.07
H220 t60 1:10	92.10 ± 0.29
H260 t15 1:15	93.56 ± 0.30
H260 t30 1:10	90.40 ± 0.26
H260 t60 1:20	95.53 ± 0.32

7/7/2023

Experimental Design

The Taguchi Method:

Experiment #	Parameter: A	Parameter: B	Parameter: C
1	1	1	1
2	1	2	2
3	1	3	3
4	2	1	2
5	2	2	3
6	2	3	1
7	3	1	3
8	3	2	1
9	3	3	2

	Experiment #	HTC Temp (C)	HTC Time (Minutes)	Water Ratio
	1	180°	15	1:10
	2	180°	30	1:20
	3	180°	60	1:15
$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$	4	220°	15	1:20
	5	220°	30	1:15
	6	220°	60	1:10
	7	260°	15	1:15
	8	260°	30	1:10
	9	260°	60	1:20
				TEO

7/7/2023 FLORIDA'S STEM UNIVERSITY

Carbon Offset

"Cooking" biomasses via HTC commonly produces gases as byproducts (CO2, ...)

HTC (for hydrochar) not as energy intensive as pyrolysis (for biochar)

Emissions depend on the biomass & cooking conditions; therefore, to know for sargassum specifically, additional data would be needed

Prelim	inary Result	<u>1</u>	00 ppm Sargassum-Derive <u>Results:</u>	<u>d Adsorbent</u>
			Type of Biomass	% Removal
			SG Raw	98.46%
			Hydrochar 180°C	98.01%
Dried Sargassum	Hydrochar H180°C 30 min.1:10 ratio I	Hydrochar H220°C 30 min. 1:10 ratio	Hydrochar 220°C	97.90%
			Hydrochar 260°C	98.54%
			Biochar H180°C P400 t15	93.24%
			Biochar H180°C P600 t30	32.39%
Hydrochar H260°C 30 min. 1:10 ratio	Biochar H180°C P400 t15	Biochar H180°C P600 t30		FLORIDA
33			7/7/2023	FLORIDA'S STEM UNIVERSITY

Concentration: 300 ppm

Experimental Design

Taguchi Method

- Taguchi method is used for product experimentation
- It's focus lies in optimization of the product and experimentation
- Allows for experimentation of a variety of different degrees of parameters

